skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Guanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 9, 2025
  2. Free, publicly-accessible full text available June 15, 2026
  3. Ensuring the frequency stability of electric grids with increasing renewable resources is a key problem in power system operations. In recent years, a number of advanced controllers have been designed to optimize frequency control. These controllers, however, almost always assume that the net load in the system remains constant over a sufficiently long time. Given the intermittent and uncertain nature of renewable resources, it is becoming important to explicitly consider net load that is time-varying. This paper proposes an adaptive approach to frequency control in power systems with significant time-varying net load. We leverage the advances in short-term load forecasting, where the net load in the system can be accurately predicted using weather and other features. We integrate these predictions into the design of adaptive controllers, which can be seamlessly combined with most existing controllers including conventional droop control and emerging neural network-based controllers. We prove that the overall control architecture achieves frequency restoration decentralizedly. Case studies verify that the proposed method improves both transient and frequency-restoration performances compared to existing approaches. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. We study a variant of online optimization in which the learner receives k-rounddelayed feedback about hitting cost and there is a multi-step nonlinear switching cost, i.e., costs depend on multiple previous actions in a nonlinear manner. Our main result shows that a novel Iterative Regularized Online Balanced Descent (iROBD) algorithm has a constant, dimension-free competitive ratio that is $O(L^2k )$, where L is the Lipschitz constant of the switching cost. Additionally, we provide lower bounds that illustrate the Lipschitz condition is required and the dependencies on k and L are tight. Finally, via reductions, we show that this setting is closely related to online control problems with delay, nonlinear dynamics, and adversarial disturbances, where iROBD directly offers constant-competitive online policies. 
    more » « less